

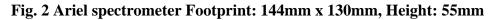
Thin Film Measurement solution Software, sensors, custom development and integration

ARIEL SPECTROMETER

Rev. 3.5, October 2021

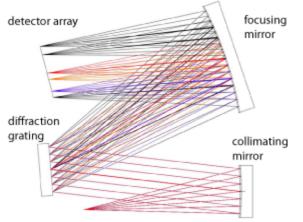
ARIEL is astigmatism corrected F3 spectrometer using 80 mm unfolded Czerny Turner optical designs. It is a rugged spectrometer with all elements set in fixed positions. High acquisition speed, sensitivity and high optical quality, coupled with Gigabit LAN/USB 2 connection, extensive communication options make it well suited for R&D, OEM and industrial applications.

Model	Wavelength range	Detector	Grating
ArielVis2000	380-1000nm	S11639-01	400 g/mm
		CMOS/2048 pixels	
ArielUVis2000	200-1000nm	S11639-01	300 g/mm dual-
		CMOS/2048 pixels	blazed


Table 1. Ariel Spectrometer Models

Wavelength range, nm	380-1000 nm (Vis), 200-1000nm (UVis)
Wavelength resolution (with 20µm slit)	< 1nm
Dynamic range	\sim 5000 (typical) - single acquisition at 10ms ⁽¹⁾
Minimum integration time	10 µs
Onboard data conditioning	Averaging, boxcar, nonlinearity correction, dark
	signal correction, fixed pattern noise correction
Nonlinearity	Residual non-linearity <0.5%
Data acquisition rate	400Hz (typical) /1.5 kHz(max)
Optical system	Unfolded Czerny-Turner, fixed
Optical bench	80 mm
Astigmatism correction	Torroid mirror
Input fiber connector	SMA 905
ADC	16 bits, 10 MHz
Communication	Gigabit LAN, USB 2
Auxiliary port	4xGPIO, I2C, 2xSPI, 4xPWM, 4xDAC, trigger,
	strobe
Power	24 VDC

Table 2. ARIEL spectrometer basic specification


⁽¹⁾ Dynamic range (DR) is determined as DR= ADC_range/rms_noise (ADC range is 2^{16} =65535, rms_noise is a dark current noise). Dark current noise can be reduced significantly by signal averaging and boxcar averaging. Some boxcar averaging can be done without reduction of wavelength resolution (at least, 2 pixels averaging in 2048 detector).

SALIENT FEATURES

- **1. Rugged design fixed position of all elements.** Optical bench design for specific wavelength range and is not reconfigurable. No wavelength re-calibration needed.
- 2. Unfolded Czerny-Turner design.

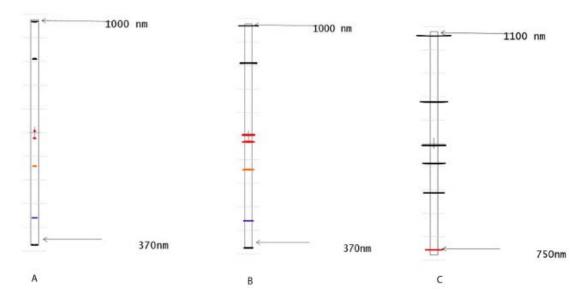


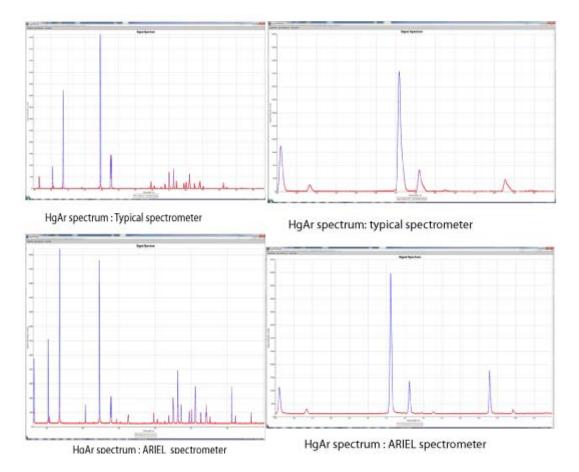
Fig. 3 Optical design

Unfolded design is used to reduce light scattering level by placing optical traps and buffers between the light paths. It is preferred for UV and Vis systems. Cross design, frequently used in commercial spectrometers, offer more compact mechanical packaging at the expense of some light scattering.

3. Astigmatism corrected design using torroid mirror

Astigmatism is present in Czerny-Turner design due to oblique incidence of light on concave mirrors. Essentially, system has different focal lengths in saggital and tangential planes in case of oblique light incidence. Astigmatism means that a point at the entrance slit becomes a line at the image plane (on the detector). The end result is a loss of light because only part of the light reaches detector. Ariel uses torroid mirror to correct astigmatism. This approach does not introduce additional elements and has no adverse effect on light scattering, resolution or ruggedness of the spectrometer unlike other options (e.g. cylindrical lens). It also reduces other aberrations that effect resolution.

Fig. 4 Image of entrance slit on detector plane


A. Ariel spectrometer (astigmatism corrected), B. Same design without astigmatism correction. C. Design with 600 g/mm grating without astigmatism correction (equivalent of 40mm bench spectrometer with the same resolution)
 Entrance slit 0.5mm height, image boundaries 0.5mm x 28.6mm (CMOS detector photosensitive area 0.2mm x28.6mm)

4. Gigabit LAN and USB 2 communication.

Well suited for industrial and desktop applications. LAN sustained measurement rate up to 1.5 kHz (with buffered spectra).

5. Aberration optimized design

Optical design is optimized for low aberration and field flatness of all measured spectrum. The result is clean, symmetrical peaks in measured spectrum making spectrometer suitable for high quality spectroscopic measurements.

Fig. 5 Comparison of HgAr spectrum measured with Ariel spectrometer and typical commercial spectrometer. Ariel spectrometer shows more sensitivity at shorter and longer wavelengths making measured spectrum more uniform. Clean and symmetrical peaks as compared to distorted peaks of commercial spectrometer.

6. Onboard data conditioning

Data conditioning like averaging, boxcar, nonlinearity correction, dark signal correction, etc. are done in FPGA firmware. This means all spectrometer specific calibration data is stored in spectrometer flash memory and applied to signal correction.

INTERFACES FOR COMMAND AND CONTROL

ARIEL spectrometer has USB2 and LAN communication ports. Communication is working in request/ response (Modbus type) format. The same commands are used for USB and LAN communication.

LAN/Ethernet port

By default, ARIEL spectrometer joins multicast group 239.239.239.238, port 57356. Spectrometer will respond to discovery command sent to this address over UDP. This is used to find spectrometer on the network.

All control/communication commands should be sent over TCP, except discovery command that is send over UDP

The default IPv4 static settings are:

- IP Address: 192.168.1.88
- Subnet mask: 255.255.255.0
- Port: 7

Spectrometer can configured with DHCP client running. In this case, if DHCP server is available on the network, IPv4 address will be assigned automatically. Configuration can be changed using either LAN or USB connection.

USB

USB communication using FTDI FT2232 chip in FIFO-485 mode to achieve full USB 2 speed. Communication commands are the same as for LAN but they are sent in special package as described below

POWER

ARIEL spectrometer is using 24VDC power. There are two power connectors: standard 2.1mm socket connector and TE 1586041-2 connector for OEM and industrial applications. These connectors can be used interchangeably.

AUXIALARY PORT

Ariel spectrometer has two auxiliary ports for communication with other devices: 34 pin main auxiliary port (AWHW 34A-0202-T connector) and 4 pin secondary port (Harting 14010413102000 connector). The secondary port is a wire terminal and it replicates PWM and GPIO signals of the main port for OEM convenience.

IGNEMENT	Purpose	
	3.3 V	
	3.3 V	
)	Common ground	
)	Common ground	
le Strobe	Output strobe synchronized	
	with acquisition	
ger	External TTL trigger	
D-1		
D-2		
D-3		
D-4		
M(1)		
M(2)		
A(3)		
A(4)		
SI (SPI_0)	Two SPI channels	
SO (SPI_0)		
(SPI_0)		
SPI_0)		
SI (SPI_1)		
O (SPI_1)		
(SPI 1)		
SPI 1)		
	I2C	
	I2C	
C-CLC	4 SPI output channels	
C-DIN	Can be used with optional	
C-OUT	DAC board for	
C-CS1	Analog output of the	
C-CS2	Measurement results	
C-CS3		
C-CS4		
)		
)		
JX	3.3/5V depending on the jumper setting	
)	

 Table 3. AUX PORT pins assignment (AWHW 34A-0202-T connector)

83 Pine Hill Rd. Southborough, MA 01772 Phone +1.617.388.6832 Fax. +1.508.858.5473 email: <u>info@semiconsoft.com</u> http://www.semiconsoft.com

PIN	ASSIGNEMENT	Purpose
1	PWM	PWM(1) pin 11 AUX
2	GND	
3	GPIO	GPIO-1 pin 7 AUX
<u>4</u>	GND	

 Table 4. AUX 2 PORT pins assignment (Harting 14010413102000 connector)

COMMUNICATION COMMANDS

Following commands can be used for communication via TCP IP or USB connection. Conventions:

a) All request commands are started with the "/"

b). Big endian convention

c). Responses are not terminated

d). Request commands have standard termination $r\n$

There are two types of the requests and two types of the responses: WriteRequest and ReadRequest, WriteResponse and ReadResponse

The purpose of the Write Request is to write the data to the firmware, the matching WriteResponse is send back to confirm success of failure of the operation.

The purpose of the ReadRequest is to read the data from the firmware/spectrometer, matching ReadResponse sends back requested data or error code in case of the failure. The general structure of :

Response to ReadRequest: /Operation code[1 byte]number_of_bytes_in_message[2 bytes]message

Response to WriteRequest: /Operation code[1 byte]Success-Error_code[1byte]

Response to ReadRequest: /Operation code[1 byte]num_bytes[2byte] data

WriteRequest: /OperationCode[1 byte] {num_bytes}data

ReadRequest / OperationCode[1 byte] Instructions

WriteResponse return 0 if success, 1 or error code (<0) if failed.

Operation	Purpose	Request	Details	Response
code		(terminated \r\n)		
0	Read Firmware version	/0		/0[num_bytes] [message] Message example: Rev.1.0,09/01/2013
1	Write parameters to flash (basic info)	/1num_bytes [2 bytes] index[1 byte] data	Index- is always 0 for basic information. Other data see function id= 97	/10 – success /11 – failure
2.	Read parameters from flash (basic info)	/2 index [1 byte] num_bytes_read [2 bytes]	index always 0, num_bytes_ read (unsigned short) – number of byte to read Other data see function id= 98	/2 num_bytes[2 byte] data /2E E-error code (<0)
3.	Write integration time	/3 value[4 byte (long)]	Integration time in µs	/30 – success /31 - failed
4.	Read Integration time	/4	•	/4value(4 bytes) /4[-1000]
5	Write dark current correction	/50 – no correction /51 – enable correction		/50 – success
6	Read dark current correction status	/6		/60 – no correction /61 enabled
7	Write boxcar averaging	 /75 – enable 5 pixels smoothing /70 – disable smoothing 1 byte 		/70 success /71 failure.
8.	Read boxcar averaging	/8		/8[num_pixels] /85 – 5 pixels averaging

0	XX7 · 4 · 1	/0[]		/00
9.	Write signal averaging	/9[num_ave]	Num_ave [1 byte] – number of averages /90 – no averages	/90 – averaging set successfully /91-error
			/910 – 10 averages	
10.	Read current averaging status	/10		/100 – no averaging /1010- 10 averages
11.	Write Stop measurement	/11	Stop the current measurement	/110 – measurement stopped
12.	Read spectrum	/12[pix_start][num Pix]	Read spectrum data (numPix) from pix_start /12203000 Read 3000 pixels starting with pixel 20	/12[num_bytes][data] Num_bytes – 2 bytes(the length of the message) Each pixel 4 bytes fixed-point float /[1 byte] [2 bytes][4n bytes]
13	Erase flash sector	/13	Erase flash sector with properties data	/130 –success /131 -failure
14	Write non- linearity correction	/14 [1 byte]	1-enable correction; 0 –disable correction	/140 – success /141 - failure
15	Read non- linearity correction status	/15		/150 –enabled /151 -disabled
16 reserved				
17	Aux write Write I2C	/17[address][num bytes] [2 bytes][2 bytes]		/170 success /171 failure
18	Aux I/O Read I2C	/18[address][num bytes] [2 bytes][2 bytes]	address 2 bytes (support 7 bit and 10 bit address)	/18[num bytes][message] /181 - failure
19	Aux I/O Write data via SPI	/19[num_bytes][1 byte address][value]	Address – SPI channel	/190 – success /191 – failure

20	Aux I/O Read data via SPI	/20[address][num_b ytes] /[1 byte][1 byte][1 byte]	Num_bytes – number of bytes to read	/20[num_bytes][data] /[1 byte][1 byte][n bytes] /20[1][1]
21	Aux I/O Write PWM	/21[channel][freq][duty_c] /21[1 byte][2 bytes][1b byte]		/210- success /211 - failed
22	Aux I/O Read PWM	/22[channel]		/22[freq][duty_c][stat us] Status 1 – enabled Status 0 - disabled
24	Aux I/O Set GPIO direction	/24[bitmask]	bit_mask – control GPIO channels 1 – means in 0 – means out	/240 –success /241 - failed
25	Aux I/O Write GPIO	/25[bit_mask:1 byte][value 1 byte]	bit_mask – control 8 GPIO channels byte: 10000000 – channel 1 on 01000000 – channel 2 on Value: 0 –off, Value 1-on	/250 – success /251- failed If attempt to write value to IN grio 0 failure response
26	Aux I/O Read GPIO	/26		/26 [bitmask_values][dir ection_bitmask]

27.	Write trigger	/27[trigger_type][d elay] /27[1 byte][2 byte]	Trigger type: 0: Normal (free running), 1:Software, 2:External TTL Delay – in µs (between trigger and detector integration) 2 bytes -short	/270-success /271-failed
28	Read trigger	/28		/28[trigger type][delay] /28E E- error code <0
29,30 reserved				
31	Write parameters	/31[2 byte][4 byte][1 byte][1 byte][1 byte] [1 byte] [length][int time][boxcar][num avg][nl corr][dark]	Convenience function combines: integration time, boxcar smoothing pix,averages, NL correction and dark correction in one call	/31 0 – success /31 1- failed
32	Read parameters	/32	Read integration time, averages, NL correction and dark correction in one call	/32 [2 byte][4 byte][1 byte][1 byte][1 byte] [1 byte] [length][int time][boxcar avg][num avg][nl corr][dark]
40	Aux I/O Write SPI (for DAC output)	/40[num_bytes][ad dress] [value]	[1 byte1[1 byte][2 bytes] Value - unsigned short, 2 bytes	/400 – success /401 – failure
50	Change static IP	/50[ip_address][,][p ort][,][gateway]	/50[36 bytes] (empty space is	/500 –success /501 – failure

	(writing new IP parameters to flash)	Example: /50192.168.1.10,7,1 92.168.1.10x2A 0x2A	padded with 0x2A) Requires reboot	
51	Enable DHCP	/51[gateway_ip*] Example: /5192.168.1.1000x2 A0x2A	[15 byte] padded with 0x2A Requires reboot	/510 –success /511 – failure
52	DHCP status request	/52		/521 – enabled /520 - disabled
60	Set single strobe (Note 4)	/60[enable/disable][pulse width μs][delay μs] [up/down][before/a fter]	 /60[1 byte][2 bytes][2 bytes] [1 byte][1 byte] 2 byte value shorts 0 - up, 1 - down, 0 - after, 1 - before acquisition start 	/600 – success /601- failed
61	Get single strobe	/61		/61[enable/disable][p ulse width µs][delay µs][up/down][before _after] Same as /60 request
62	Set measurement frequency	/62[frequency Hz] Sets continuous data acquisition with specified frequency Frequency is int, no fractions.	/61[2 bytes] 2 byte is short Frequency= 0 – means it is disabled.	/620 –success /621 – failed This command requires Software trigger ON (otherwise it is in a wait mode)
63	Get Measurement frequency	/63		/62[2 bytes] 2 bytes - frequency
70	Read Temperature	/70 Returns 4 byte: temperature of the detector and temperature of the body/heatsink	Note 5	/70[2 byte][2 byte] (/70[detector][body])
71	Set sensitivity	/71 [1 byte]		/710 –success

	(NIR detector)	0 – HDR (high- dynamic range mode) 1-HS (high sensitivity mode)		/711 – failed
72	Get sensitivity mode	/72		/720 – HDR mode /721 –HS mode
73	Enable TEC (Note 5)	/73 [1 byte]	1 –enable 0-disable	
74	Get TEC status	/74		/740 –disabled /741 –enabled
75	Set Detector temperature	/75[1 byte]		/750 –success /751 - failed
76	Stop Measurement	/76	Terminates signal acquisition process	/760 – success /761 failure
		Reserved		
80	Set ADC range	/80 [1 byte]	0 – default range (4V) 1 – short range (2V)	/80 0 success /80 1 failed/ not supported
81	Get ADC range	/81		/80 0 – default range /80 1 – 2V range /80 E (E<0) – not supported
82	Set gain	/82 [4 byte]	4 byte fixed point float (FF)	/82 0 – success /82 1 failed
83	Get gain	/83		/83 [4 bytes] – FF value
84	Set offset	/84 [2 byte]	2 bytes - short	/84 0 – success /84 1 failed
85	Get offset	/85		/85 [2 bytes] – short
90	Write dark Calibration data	/90 length[2 bytes][n- bytes - floats]		/900 success /901 - failed
91	Read dark calibration data	/91		/91 length[2 bytes] data[]
92	Write structured noise correction(SNC)	/92 length[2 bytes][n- bytes - floats]		/920 success /921 - failed
93	Read SNC	/93		/93 length[2 bytes] data[]
97	Write calibration to flash	N/A		Only factory use

83 Pine Hill Rd. Southborough, MA 01772 Phone +1.617.388.6832 Fax. +1.508.858.5473 email: <u>info@semiconsoft.com</u> http://www.semiconsoft.com

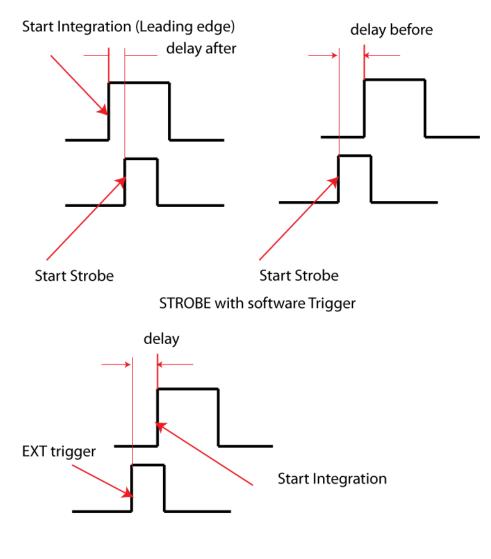
98	Read Calibration from flash	/98 num_data_bytes [2 bytes] page[2 bytes]		/98 num_data_bytes [2 bytes] data[] If failed: /98 E E-error code (<0)
99	Backup	N/A	Backup IP settings and basic settings to save area in flash	Only factory use. This data is used for emergency reset when reset button on FPGA is pressed.
100	IP reset	/100 Reset IP to the default value		/1000 – success /1001 - failed
101	Multicast UDP	/101	The message to find spectrometer	Response: /101[2 bytes length] SerialNumber Note 1.

Table 4. Spectrometer commands.

NOTE 1. Command 101 (0x65) is a UDP transmission send to group 239.239.239.238 and port 57356

Expected response is Serial Number of spectrometer (IP address is embedded in the packet automatically)

NOTE 2


Fixed float notation.

FF is 4 byte: 2 bytes (unsigned short) – before decimal point, 2 bytes (unsigned short) – after decimal point X(.)Y is transmitted as 2 unsigned shorts: xy where x=X-2 bytes . $y=Y/2^{16}-2$ bytes

NOTE 3 <u>DHCP enable/disable</u>

Sending command 50 (change static IP) automatically disables DHCP. Sending command 51 (enable DHCP) enables DHCP and sets DHCP server address (typically Gateway ip) FPGA will need to be powered down and rebooted for changes to take effect after commands 50 and 51

NOTE 4

Single strobe

It is generated during each integration cycle and available on the AUX port pin. It is used to synchronize measurement with external device (like flash light, etc.). "Up" pulse means level normally low – pulse is raising 0->5V, down pulse means level normally high – pulse drops to 5V->0.

The strobe can be generated before or after the acquisition started.

This command is used together with Software trigger.

Normal sequence is to set Strobe, Set measurement frequency and use Sofware trigger to

83 Pine Hill Rd. Southborough, MA 01772 Phone +1.617.388.6832 Fax. +1.508.858.5473 email: <u>info@semiconsoft.com</u> http://www.semiconsoft.com Normal sequence is to set Strobe, Set measurement frequency and use Sofware trigger to enable/disable action.

Command	Software Trigger	Single Strobe	Activate Strobe
Software Trigger	Х	Х	Yes
Single Strobe		Х	No
Single Strobe	Х	-	No

Table 5. Single Strobe logic (truth table)

TRIGGER MODE.

Type 0 – default. Free running – no trigger. Signal integration and data readout is done continuously. Frequency is determined by the integration time+ readout time.

Type 1 – software trigger. Acquisition stops and waiting for software request or "Set measurement frequency" activated.

a. Measurement frequency is set – acquisition proceeds with the specified frequency (internally generated). When measurement request arrived – fresh available measured spectrum is returned.

b. Measurement frequency is not set.

Measurement request – initialize one acquisition cycle and measured spectrum is returned. Acquisition is on hold until next request/

Type 2 - data acquisition is on hold: waiting for the external trigger. After trigger arrives, one acquisition cycle is preformed. The cycle is triggered by the leading front of the pulse (0-5V rise).

NOTE 5.

For NIR detector, firmware should set following default value at startup: TEC enabled, target temperature: -5C

NOTE 6.

Temperature format. Temperature is returned as signed short (2 bytes). T – returned value, t- measured temperature deg. C. T=100*t;

If measured temperature t=5.23 deg. The returned value is 100*t=523. (Client software will convert the value back to 5.23)

USB communication.

USB communication uses the commands as TCP but, in addition, communication is done using packets.

Encoding protocol is using bulk transfer of the USB data. Current implementation is for FTDI synchronous FIFO mode. USB controller sends data in packets that are grouped in frames. Each data packet has a structure described in Tab. 1 This document describes encoding of the data field only.

Complete packet and additional required data fields are generated by the USB controller and do not require application program attention.

Field	SYNC	PID	DATA*	CRC16	EOP
#bits	32	8	0-4096	16	3

* 4 bytes are reserved for FTDI status, etc., so only 508 bytes of the application data can be sent

Table 6. Structure of USB transmission packet

Maximum length of transmitted packet up to 508. The length should a multiple of 4. (non-complaint message should be padded with 0 to have the length multiple of 4).

Name	Offset(bytes)	Length (bytes)	Comments
Start bytes	0	2	0xA1 (offset 0).0xA0
			(offset 1)
Protocol	2	1	Current protocol =1
version			
Number of	3	1	Number of packets in
packets*			the transmission.
Function #	4	1	The command function
			number
Sequence #	5	1	Sequential Packet #,
			starts with 0
Message	6	2	The length of the
length			following byte
			message. represented
			with short (2 bytes)
Payload	8	500	The message itself
			(same as TCP)

 Table 7. Data field of the packet (see table 5) for USB communication.

Payload is the command as determined by TCP command protocol, only broken in 500 byte chunks when needed.

• For example, measured data from 2048 pixels is 8192 bytes length (2048x 4) It requires 17 packets.

Total payload: 8196 (2 bytes – the length of the data, 2 bytes to have a multiple of 4)

16 packets – 500 bytes payload, 17th packet – 196 bytes payload).

Total transmitted bytes (including headers): 508x16+(196+8) = 8332

SOFTWARE INTEGRATION.

There are several software integration options:

- Direct communication using commands in Table 4. This is especially easy in case of TCP communication standard TCP socket communication can be used. There is no any drivers and operating system dependency. USB communication required the use of FTDI driver.
- SpectrometerClient software supplied with spectrometer and can be used to do basic function of data acquisition, data display and interface with AUX port. SpectrometerClient library has a public interface that can be used by external software as an SDK to communicate with spectrometer.
- TFCompanion software (available separately) can be used for Reflectance/ Transmittance and thickness, n&k measurement.